Assignment 2

Targets

- The main objective is to understand the cost differences between public, private and hybrid clouds. Additionally carbon footprint should be compared.
- Present own problem solving skills
- Simulates real problem but it is not 100% real!
- If some data you need is missing, ask or define your own assumptions

Problem statement

Virtual Phone Itd, a new startup, will start a new mobile service in Finland, starting 2013 and expanding to Europe 2014 and global markets 2015. Their service is backend system for HTML5 enabled mobiles that are fully virtualized [1]. This means that most of the mobile content and applications reside in the cloud. Virtual Phone Itd considers purchasing a computing platform from you, A2 ltd. We can ignore data storage and transmission costs. Your task is to write a summary of your tender that defines the computation system and costs. You have to optimize your system based on load and cost, and evaluate CO2 consumption.

Requirements (1/2)

- Number of customers: end of 2013: 1 M +/- 10%, 2014: 10 M +/-30%, 2015: 100 M +/-50%
- Provide your offer with Amazon ECU equivalent computation units
- 1 ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor
- ~10 customers need during peak totally 1 ECU computation power
- Customer growth is even/exponential
- 50% PaaS (Linux or Windows), 50% laaS (Linux)
- Load distribution similar every day, and load evenly distributed between max and min load
- Keep 10% safe margin for real-time services

Requirements (2/2)

- PUE:
 - Public cloud: PaaS = 1.2; laaS = 1.1
 - Private cloud (web hotel) = 1.7
 - Private cloud (own cluster) = 2.5
- Data should be stored close to customer to minimize Round Trip Time (RTT) and transmission costs
- Period of evaluation: 3 years, interest rate: 10%

Alternatives

1. Public cloud (PaaS, laaS)

- You may use, for example, Amazon (laaS),
 Google or Azure (PaaS)
- Pay per use, 1 year or 3 year contract

2. Private cloud (hosted)

For example Nebula

3. Private cloud (own cluster)

- DCS cluster, 3000 €/blade; one blade equals to 16 cores, max 64 blades per rack, 20 000 €/rack
- Greenberg [2]: From all ICT costs 45% comes from servers
- Note that 1 euro servers requires 8 euro admin

4. Hybrid [3] using previous alternatives (1-2, 1-3, 2-3)

Server cost split example

Report, pdf, 4 page, IEEE template

- Title, author details with email and student number
- Abstract and keywords
- Introduction: explain assignment requirements, restrictions and alternatives.
- Background: explain the cloud alternatives, their major differences.
- Architecture: describe your chosen architecture. Give reasons why you picked up this one, what are the critical issues in other options.
- Cost analysis: Calculate all costs relating to computing (also admin with your own cluster) during 36 months (2013-2015) with the current price data. Show the cost curves per month during the time period.
- Carbon footprint analysis: Evaluate carbon footprint values in each scenario.
- Discussion: what are the restrictions, pros and cons, risks and security challenges of your proposal. Greeness? Elaborate future development ideas.
- Conclusions: summary of your work.
- References

Grading

- Each subsection evaluated 0, 1, 3, 5
 - Overall quality
 - Alternative analysis
 - Architecture analysis (cost, carbon footprint)
 - Discussion (pros/cons)
- Average rounded to closest integer gives your Assignment grade

References and Links

- 1. A. Taivalsaari and K. Systä, "Cloudberry: An HTML5 Cloud Phone Platform for Mobile Devices," IEEE Software, July/August 2012, pp. 40-45.
- 2. A. Greenberg, J. Hamilton, D.A. Maltz and P. Patel, "The Cost of a Cloud: Research Problems in Data Center Networks," ACM SIGCOMM Computer Communication Review, vol. 39, no. 1, Jan 2009, pp. 68-73.
- 3. M. Hajjat, X. Sun, Y-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and M.Tawarmalani, Cloudward Bound, 2Planning for Beneficial Migration of Enterprise Applications to the Cloud," ACM SIGCOMM'10.
- http://www.ieee.org/conferences_events/conferences/publishing/templates.html
- http://aws.amazon.com/ec2/instance-types/
- http://aws.amazon.com/ec2/pricing/
- https://cloud.google.com/pricing/
- http://www.windowsazure.com/en-us/pricing/calculator/
- http://www.nebula.fi/palvelut/pilvipalvelut/kapasiteettipalvelut/

Questions?

Contacts:

Teacher: yrjo.raivio(at)aalto.fi, A122

Course staff: t-110.5121(at)tkk.fi

